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Abstract

Drying of multi-dimensional food products is investigated analytically. A simple method is developed for the de-

termination of drying time of multi-dimensional products using drying parameters that are available from the literature

or can be determined experimentally. In this respect, geometric shape factors for different regular multi-dimensional

products are introduced. Drying time that can be calculated analyticaly for an infinite slab geometry is used to predict

the drying times for other multi-dimensional products by means of the geometric shape factors. The present model is

verified through comparison with experimental drying times of several food products in different shapes that are ob-

tained from the literature. The comparison of the results obtained from the present model with the experimental data

shows that the predictions are accurate within �10% range, in general. � 2002 Elsevier Science Ltd. All rights

reserved.

1. Introduction

Drying of particulate objects, which is a process of

simultaneous heat and mass transfer, is an energy-in-

tensive operation of some industrial significance. It is a

process whereby the moisture is vaporized and swept

away from the surface, sometimes in vacuum but nor-

mally by means of a carrier fluid passing through or over

the moist object. This process has found industrial ap-

plications in various forms ranging from wood drying in

the lumber industry to food drying in the food industry.

In the process, the heat may be added to the object from

an external source, by convection, conduction, or radi-

ation, or the heat can be generated internally within the

solid body by means of electric resistance. However,

regardless of the mode of heating, the moisture is always

removed in a vapor phase.

There have been several experimental and theoretical

studies on the determination of moisture diffusion and

moisture transfer coefficients and on the analysis of

heat and moisture transfer during drying of food

products, undertaken by several researchers and engi-

neers [1–14].

Zogzas and Maroulis [9] critically examined the effect

of using different methods of analysis on the same ex-

perimental drying data since the moisture diffusivity is

the most crucial property in drying calculations and the

literature data are scarce due to the variation of both

experimental measurement techniques and methods of

analysis. They applied detailed and simplified mathe-

matical models incorporating moisture diffusivity as a

model parameter and found that significant differences

in the calculated values of moisture diffusivity result

when different models are employed. They also con-

ducted experimental work using a typical pilot plant

dryer with controlled air conditions and proved that the

moisture content dependence of the diffusion coefficient

is of significance at the last drying stage based on the

well-known Arrhenius relation. Furthermore, the effects

of considering external mass transfer and volume

shrinkage during drying were investigated. The authors

made a significant contribution with their work to the

current drying literature and provide some practical tips

to the drying industry.

Dincer and Dost [1,11] first developed new analytical

models in a simple and accurate manner to determine

the moisture diffusivity and moisture transfer coefficients
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for the geometrically shaped products subject to a dry-

ing process, by using the moisture profiles within the

products. They also introduced new drying parameters

in terms of drying coefficient and lag factors, based on a

similarity occurring between the cooling and drying

profiles since these profiles decrease in an exponential

form with process time. Therefore, they also first in-

corporated these new drying parameters into the ana-

lytical models developed. The developed moisture

diffusivity and moisture transfer coefficient models were

verified with the actual data sets and remarkably good

agreement was found between the model results and

experimental data. But there is a need to do further re-

search in this topic, particularly for the food products

with irregular shapes. In this regard, it will be quite

useful to develop some shape factors and incorporate

these into the models. In addition, Dincer [15] developed

a new dimensionless number for forced-convection heat

transfer during heating and cooling of solid objects,

expressing the effect of flow velocity of heating or

cooling fluid (as the fluid property) on the heating and

cooling coefficient (as the thermal parameter) of the

object with regular and irregular shapes. Now, it is in-

tended to extent this to food drying applications.

In this regard, an accurate analysis of moisture

transfer during drying of multi-dimensional objects is

essential. Although there are many moisture transfer

models (e.g., Arrhenius equation, Fick’s law for diffu-

sion, the lumped model) available in the literature to

study the one-dimensional moisture diffusion and to

determine drying times, moisture content distributions

and moisture transfer parameters, e.g., moisture diffu-

sivities and moisture transfer coefficients [2–14,16], to

the best of the authors’ knowledge no model is available

for multi-dimensional shapes for the solid objects sub-

ject to drying process in the open literature. It is im-

portant to note that in the literature, there are some

models available for mass transfer from the liquids, not

from the solids. It is also important to mention that at

the present time we are able to use some advanced

computational techniques for such processes to obtain

whatever parameter is needed. However, these require

the computational softwares and workstations (or PCs)

allocated for. In drying industry, practitioners need

simple, but accurate analytical tool to conduct the de-

sign analysis and relevant calculations. This study is

undertaken analytically to develop such models for

practical applications.

In the present paper, a simple model of moisture

transfer for multi-dimensional products is presented.

Making use of the analogy between heat conduction and

moisture transfer, drying time for infinite slab products

is formulated. The analysis is then extended to multi-

dimensional products through the geometric shape fac-

tors introduced. An illustrative example is presented to

highlight the importance of the present model and show

how to use the present methodology to determine shape

factors, along with other relevant parameters such the

Biot number and dimension ratios.

2. Analysis of heat and moisture transfer

2.1. Modeling drying process of infinite solid slab products

The transient moisture diffusion process, which oc-

curs during drying of solid objects, is similar in form to

the process of heat conduction in these objects. The

governing Fickian equation is exactly in the form of the

Fourier equation of heat transfer, in which temperature

and thermal diffusivity are replaced with concentration

and moisture diffusivity, respectively. Therefore, similar

to the case of unsteady heat transfer, one can consider

three different situations for the unsteady moisture dif-

Nomenclature

a thermal diffusivity (m2=s)
Bi Biot number (¼ hmL=D)
D moisture diffusivity (m2=s)
E shape factor

F heat transfer surface area (m2)

Fo Fourier number (¼ Dt=L2)
hm mass transfer coefficient (m/s)

G lag factor

L characteristic dimension (m)

S drying coefficient (1/s)

t time (s)

T temperature (K)

U velocity (m/s)

V volume (m3)

W moisture content (kg/kg)

y coordinate (m)

z coordinate (m)

b1 ratio of second dimension to the characteristic

length

b2 ratio of third dimension to the characteristic

length

r characteristic dimension (m)

U dimensionless moisture content

h dimensionless temperature

Subscripts

a ambient

c center

e equilibrium

i initial
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fusion, namely, the cases where the Biot number has the

following values: Bi6 0:1, 0:1 < Bi < 100, and Bi > 100.
The first case, corresponding to situations where

Bi6 0:1, imply negligible internal resistance to the

moisture diffusivity within the solid object. On the other

hand, cases where Bi > 100, including negligible surface
resistance to the moisture transfer at the solid object, are

the most common situation, while cases where

0:1 < Bi < 100, including the finite internal and surface
resistances to the moisture transfer, exist in practical

applications.

The time-dependent heat and moisture transfer

equations in Cartesian, cylindrical, and spherical coor-

dinates for an infinite slab, infinite cylinder, and a

sphere, respectively, can be written in the following

compact form:

1

ym

� �
o

oy

� �
ym

oT
oy

� �� �
¼ 1

a

� �
oT
ot

� �

for heat transfer ð1Þ

and

1

ym

� �
o

oy

� �
ym

oW
oy

� �� �
¼ 1

D

� �
oW
ot

� �

for moisture transfer; ð2Þ

where m ¼ 0, 1, and 2 for an infinite slab, infinite cyl-
inder, and a sphere. y ¼ z for an infinite slab, y ¼ r for
infinite cylinder and sphere. T represents temperature

(�C), W is moisture content by weight as dry basis (kg/

kg), a is thermal diffusivity (m2=s), D is moisture diffu-
sivity (m2=sÞ, and t is time (s).

Using the experimental data in the mathematical

model developed, the dimensionless temperature (h) and
dimensionless moisture content (U) can be defined as
follows:

h ¼ ðT � TiÞ=ðTa � TiÞ; ð3Þ

U ¼ ðW � WeÞ=ðWi � WeÞ; ð4Þ

where subscripts a, e, and i indicate ambient, equilib-

rium, and initial conditions, respectively.

The following assumptions are made:

• Thermophysical properties of the solid and the dry-

ing medium are constant.

• The effect of heat transfer on the moisture loss is neg-

ligible.

• The moisture diffusion occurs in the z direction (per-

pendicular to the slab surface) only.

Under these conditions, the governing one-dimensional

moisture diffusion equation, Eq. (2), can be written as

D
o2U
oz2

¼ oU
ot

: ð5Þ

The following initial and boundary conditions are con-

sidered:

Uðz; 0Þ ¼ 1; ð6Þ

ðoUð0; tÞ=ozÞ ¼ 0; ð7Þ

�DðoUðL; tÞ=ozÞ ¼ hmUðL; tÞ for 0:16Bi6 100; ð8Þ

UðL; tÞ ¼ 0 for Bi > 100;

and

�hmFUðL; tÞ ¼ qVcpoðUðL; tÞÞ=ot for Bi < 0:1; ð9Þ

where F is heat transfer surface area, L is half thickness

of slab and the Biot number is Bi ¼ hmL=D.
The solution of Eq. (5) is extensively treated for the

regular shaped objects earlier [17,18]. So, the dimen-

sionless average moisture distribution becomes

U ¼ expð�hmt=rÞ

for the case where Bi < 0:1 ½r ¼ ðV =F Þ ¼ L� ð10Þ

and

U ¼
X1
n¼1

AnBn for the case where Bi > 0:1: ð11Þ

Eq. (11) can be simplified by ignoring the values of

(l2Fo) smaller than 1.2 (taking only the first term into
consideration), resulting in

U ¼ A1B1; ð12Þ

where A1 is given by

A1 ¼ 2 sin l1=ðl1 þ sin l1 cos l1Þ
for 0:16Bi6 100

ð13Þ

and

A1 ¼ 2=l1 for Bi > 100; ð14Þ

and B1 is

B1 ¼ exp
�
� l21Fo

�
for Bi > 0:1; ð15Þ

where the Fourier number is defined as Fo ¼ Dt=L2.
The corresponding characteristic equations are given

as

cotðl1Þ ¼ ð1=BiÞl1 for 0:16Bi6 100 ð16Þ

and

l1 ¼ p=2 for Bi > 100: ð17Þ

Due to the fact that drying has an exponentially de-

creasing trend, we establish the following equation for

the objects subject to drying, by introducing lag factor

(G, dimensionless) and drying coefficient (S, 1/s):

U ¼ G expð�StÞ: ð18Þ
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Here drying coefficient shows the drying capability of

the object or product and lag factor is an indication of

internal resistances of object to the heat and/or moisture

transfer during drying. Both Eqs. (12) and (18) are in the

same form and can be equated to each other by having

G ¼ A1 and S ¼ l21D=L
2. Therefore:

Moisture transfer coefficient:

hm ¼ rS for Bi < 0:1; ð19Þ

hm ¼ ðD=LÞBi for Bi > 0:1: ð20Þ

Moisture diffusivity:

D ¼ SL2=l21; ð21Þ

where l1 is given in Eq. (16).

2.2. Drying time for infinite solid slab product

Analytical drying time of a slab object can be ob-

tained using Eqs. (10) and (12) as

tslab ¼ � r
hm
ln Uc for Bi < 0:1; ð22Þ

tslab ¼ � L2

Dl21
ln

Uc
A1

� �
for BiP 0:1; ð23Þ

where Uc is the dimensionless centerline moisture con-
tent.

On the other hand, using the experimental model

given in Eq. (18), the drying time can be related to the

lag factor and drying coefficient as

tslab ¼ � 1
S
ln

Uc
G

� �
for 0:16Bi < 100: ð24Þ

3. Drying time for regular multi-dimensional shaped

products

In practice, various types of objects (foods, woods,

etc.) that are to be dried are usually of three-dimensional

shape. Therefore, accurate determination of drying time

for multi-dimensional products becomes an important

issue, since this directly relates to conservation of energy

and quality of the product. Due to the complexity of the

problem, an analytical solution may not be possible.

However, introducing a geometric shape factor, a rea-

sonably accurate drying time for regular multi-dimen-

sional shaped object, tshape, can be calculated as

E ¼ tslab
tshape

; ð25Þ

where E is the geometric shape factor that is a function

of the shape and the Biot number. The analytical ex-

pressions for the geometric shape factor are proposed by

Hossain et al. [19] for cooling applications.

4. Geometric shape factors

In all the geometrical shapes considered, L is the

characteristic dimension (smallest distance from center

to surface) and the parameters b1 and b2 are the ratios of
the second and third dimensions to the characteristic

dimension, respectively.

4.1. Infinite rectangular rod of sides 2L
 2b1L

When the axial dimension of a rectangular shape

product is relatively large, the product can be considered

to be an infinite rectangular rod. This means that the end

effects of the axial direction are neglected and the dif-

fusion process is considered to be two-dimensional. This

will be a good approximation when the axial dimension

is larger than 4–5 times the second largest dimension

[20]. In this case, the geometric shape factor is obtained

as follows [20,21]:

E ¼ 1

�
þ 2

Bi

�
1

�8<
: þ 2

Bi

�

� 4
X1
n¼1

sin zn

z3n 1þ sin2 zn
Bi

� �
zn
Bi sinhðznb1Þ þ coshðznb1Þ

� �
2
4

3
5
9=
;

�1

;

ð26Þ

where the values of zn are the roots of

Bi ¼ zn tan zn: ð27Þ
Considering only the first term in Eq. (26), the shape

factor can be approximated as

E ¼ 1

�
þ 2

Bi

�
1

�8<
: þ 2

Bi

�

� 4 sin z1

z31 1þ sin2 z1
Bi

� �
z1
Bi sinhðz1b1Þ þ coshðz1b1Þ

� �
9=
;

�1

;

ð28Þ
where the values of z1 are the roots of

Bi ¼ z1 tan z1: ð29Þ

4.2. Rectangular brick of dimensions 2L
 2b1L
 2b2L

Some of the pre-processed food products such as

meat cuts, poultry, etc., may be approximated as

rectangular brick. In this case, the diffusion process is

three-dimensional. The geometric shape factor for this

geometry is obtained as follows:
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E ¼ 1

�
þ 2

Bi

�
1

�8<
: þ 2

Bi

�

� 4
X1
n¼1

sin zn

z3n 1þ sin2 zn
Bi

� �
zn
Bi sinhðznb1Þ þ coshðznb1Þ

� �
2
4

3
5

� 8b22
X1
n¼1

X1
m¼1

sin zn sin zm

"

 coshðznmÞ

��

þ znm
Bib2

sinhðznmÞ
�
znzmz2nm 1

�
þ 1

Bi
sin2 zn

�


 1

�
þ 1

Bib1
sin2 zm

���1
#9=
;

�1

; ð30Þ

where the values of zn and zm are the roots of

Bi ¼ zn tan zn ð31Þ

and

ðBi
 b1Þ ¼ zm tan zm; ð32Þ

respectively, and the values of znm are given by

z2nm ¼ z2nb
2
2 þ z2m

b2
b1

� �2
: ð33Þ

In order to obtain a simpler and easy-to-use formula,

consider only the first term in Eq. (28). The accuracy

with this assumption depends on the dimensions of the

product. When the three dimensions of the product are

nearly the same size, more terms should be included for

better accuracy. The geometric shape factor, in this case,

can be approximated as

E ¼ 1

�
þ 2

Bi

�
1

�8<
: þ 2

Bi

�

� 4 sin z1

z31 1þ sin2 z1
Bi

� �
z1
Bi sinhðz1b1Þ þ coshðz1b1Þ

� �

� 8b22 sin z1 sin z2

"

 coshðz12Þ

��

þ z12
Bib2

sinhðz12Þ
�
z1z2z212 1

�
þ 1

Bi
sin2 z1

�


 1

�
þ 1

Bib1
sin2 z2

���1
#9=
;

�1

; ð34Þ

where the values of z1 and z2 are the roots of

Bi ¼ z1 tan z1 ð35Þ

and

ðBi
 b1Þ ¼ z2 tan z2; ð36Þ

respectively, and the values of znm are given by

z212 ¼ z21b
2
2 þ z22

b2
b1

� �2
: ð37Þ

4.3. Finite cylinder of radius L and height 2b1L (height

exceeds diameter)

Many food products (e.g., cucumbers, eggplants,

zucchini) are of cylindrical shape. For the products with

their axial dimension (height) larger than the diameter,

the geometric shape factor is obtained as follows [20,21]:

E ¼ 2

�
þ 4

Bi

�

 1

�(
þ 2

Bi

�
� 8

X1
n¼1

y3nJ1ðynÞ 1
��

þ y2n
Bi2

�


 coshðb1ynÞ
�

þ yn
Bi
sinhðb1ynÞ

���1)�1

; ð38Þ

where the values of yn are the roots of

ynJ1ðynÞ � BiJ0ðynÞ ¼ 0 ð39Þ

and J0 and J1 are the Bessel functions of first kind of
order 0 and 1, respectively:

J0ðyÞ ¼ 1�
y2

22
þ y4

2242
� y6

224262
þ � � � ; ð40Þ

J1ðyÞ ¼
y
2
� y3

224
þ y5

22426
� y7

2242628
þ � � � ð41Þ

For the same reasons stated above and considering only

the first term in Eq. (38), the shape factor can be ap-

proximated as

E ¼ 2

�
þ 4

Bi

�

 1

�(
þ 2

Bi

�
� 8 y31J1ðy1Þ 1

��
þ y21
Bi2

�


 coshðb1y1Þ
�

þ y1
Bi
sinhðb1y1Þ

���1)�1

; ð42Þ

where the values of y1 are the roots of

y1J1ðy1Þ � BiJ0ðy1Þ ¼ 0: ð43Þ

4.4. Finite cylinder of radius b1L and height 2L (diameter

exceeds height)

For the products that are circular and with their

height less than the diameter (e.g., peaches, meat burg-

ers, cheese, potato cuts), the geometric shape factor is

obtained as follows:

E ¼ 1

�
þ 2

Bi

�

 1

�(
þ 2

Bi

�

�4
X1
n¼1

sin zn
z2n zn þ cos zn sin zn½ � I0ðznb1Þ þ zn

Bi I1ðznb1Þ
� �

" #)�1

;

ð44Þ
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where the values of zn are the roots of

Bi ¼ zn tan zn ð45Þ

and I0 and I1 are the Bessel functions of second kind of
order 0 and 1, respectively:

I0ðzÞ ¼ 1þ
z2

22
þ z4

2242
þ z6

224262
þ � � � ; ð46Þ

I1ðzÞ ¼
z
2
þ z3

224
þ z5

22426
þ z7

2242628
þ � � � : ð47Þ

Again, considering only the first term in Eq. (44), the

shape factor can be approximated as

E ¼ 1

�
þ 2

Bi

�

 1

�(
þ 2

Bi

�

� 4 sin z1
z21 z1 þ cos z1 sin z1½ � I0ðz1b1Þ þ z1

Bi I1ðz1b1Þ
� �

)�1

;

ð48Þ

where the values of z1 are the roots of

Bi ¼ z1 tan z1: ð49Þ

4.5. Infinite elliptical cylinder of semi-minor axis L and

semi-major axis b1L

Long axial food products with elliptical cross-section,

a simple and reasonably accurate geometric shape factor

is obtained as follows:

E ¼ 1þ
1þ 2

Bi

b21 þ
2b1
Bi

: ð50Þ

4.6. Ellipsoid having semi-axes of L; b1L, and b2L

When the axial dimension is finite, then the diffusion

process becomes three-dimensional. In general, all the

irregular shape products can be approximated to be el-

lipsoid. In this case, a simple form of geometric shape

factor is written as

E ¼ 1þ
1þ 2

Bi

b21 þ
2b1
Bi

þ
1þ 2

Bi

b22 þ
2b2
Bi

: ð51Þ

Two special cases can be of common interest. Many

food products appear to have these two shapes. They are

as follows:

(a) Prolate spheroid, b1 ¼ 1 ) egg model:

E ¼ 2þ
1þ 2

Bi

b22 þ
2b2
Bi

: ð52Þ

Oblate spheroid, b1 ¼ b2 ¼ b ) hamburger model:

E ¼ 1þ 2
1þ 2

Bi

b2 þ 2b
Bi

: ð53Þ

5. Results and discussion

In order to demonstrate the accuracy and usefulness

of the above given geometric shape factors in calculating

the drying times, first the effects of drying and geometric

parameters such as Biot number ðBiÞ; b1 and b2 are
discussed. Here the Biot number for drying shows the

magnitude of the internal and external resistances to

moisture transfer from the product. The shape factor

shows the ratio of the drying time of a regular slab

object to the drying time of a multi-dimensional object.

b1 and b2 are representing the ratios of second and third
dimensions to the characteristic lengths. Then the pre-

dicted drying times obtained using these geometric shape

factors can be compared with the experimental drying

results obtained from the literature.

Fig. 1 shows the drying shape factor (E) with Biot

number ðBiÞ as b1 is variable for infinite rectangular rod.
E attains high values at Bi6 0:1 and as Bi increases E
reduces rapidly for all b1 values. This behavior can also
be observed from Eqs. (26)–(29), i.e., Bi > 0:16 the effect
of Bi almost diminishes and E becomes almost b1 de-
pendent. In this case, it is the geometric configuration of

the object which defines the E, i.e., the geometric con-

figuration effects the drying time ratio (tslab=tshape). The
effect of b1 on E is significant. Increasing b1 reduces the
value of E. This indicates that increasing b1, defining
the size of the object, increases the size of the object

which in turn results in lower drying time for a small size

slab than the slab corresponding to the large size.

Fig. 1. Drying shape factor (E) versus Biot number for various

geometric factors b1 for infinite rectangular rod.
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Fig. 2 shows the drying shape factor (E) with Biot

number (Bi) as b1 is variable for rectangular brick. E
reduces with increasing Bi as well as with increasing b1.
This behavior is also true for all b2 values employed in
the analysis. The decay of E with Bi is more pronounced

for BiP 0:1. In this case, increasing Bi results in in-

creasing moisture transfer coefficient, which lowers the

drying shape factor. Moreover, the effect of b1 on the
drying shape factor is significant for all Biot numbers.

This shows that enlarging the size of the brick reduces

the drying shape factor, which is true for all Biot num-

bers. The effect of third dimension ratio (b2) on the
drying shape factor is becoming identical to that of b1.
As shown in Fig. 2, increasing b2 reduces the value of
drying shape factor. Moreover, the behavior of drying

shape factor with Biot number does not change by

changing b2, due to the 0fact that the Biot number is a
function of the moisture transfer coefficient, the char-

acteristic dimension and the moisture diffusivity. Fur-

thermore, both the Biot number and the shape factor are

related to the characteristic dimension.

Figs. 3–6 show drying shape factor with Biot number

(Bi) as b1 is variable for finite cylinder, elliptic cylinder,
and ellipsoid. In general, all the cases, drying shape

factor reduces with increasing Biot number. The be-

havior of curves is similar to those corresponding to the

previous cases (Figs. 1 and 2). The effect of size of the

cylinder on the drying shape factor is insignificant as

seen from Figs. 3 and 4. In the case of elliptic cylinder,

the value of drying shape factor reduces and the varia-

tion of drying shape factor with Biot number is not

substantial as compared to that for circular cylinders.

This is more apparently for b1 ¼ 1. This argument is
also true for ellipsoid for b2 ¼ 1 as shown in Fig. 6. The
effect of b2 on the drying shape factor is identical to that

of b1. In this regard, as b2 increases, the variation of
drying shape factor with Biot number becomes consid-

erable, provided that the value of drying shape factor

reduces as b2 increases.

5.1. Model verification and illustrative example

In order to verify the accuracy of the shape factors

given above, several products in different shapes are

selected from the literature as given in Table 1. The

characteristic length (L), diffusion coefficient (D), mois-

ture transfer coefficient (hm) and the experimental drying
time (texp) for corresponding centerline moisture content
(Uc) are based on experimental values and are obtained

Fig. 2. Drying shape factor (E) versus Biot number for various

geometric factors b1 for rectangular brick with b2 ¼ 2.
Fig. 3. Drying shape factor (E) versus Biot number for various

geometric factors b1 for finite cylinder (height exceeds diame-
ter).

Fig. 4. Drying shape factor (E) versus Biot number for various

geometric factors b1 for finite cylinder (diameter exceeds
height).
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as outlined in the previous papers [18,22]. The predicted

theoretical drying time (tpred) for these products have
been calculated using the present method and are also

given in Table 1 next to the experimental values (texp) for
comparison. The agreement between the experimental

and theoretical drying times has been shown in the last

column of Table 1. The agreement is good in general,

except for the case of okra, for which a deviation of

11.5% is obtained between the experimental measure-

ment and theoretical prediction. This may be due to

some measurement errors involved and the assumptions

made for the shape of the product in the model. The

assumptions that might have resulted in some discrep-

ancies between the actual and the model results are the

simplification in considering the first term only in the T
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Fig. 6. Drying shape factor (E) versus Biot number for various

geometric factors b1 for ellipsoid with b2 ¼ 2.

Fig. 5. Drying shape factor (E) versus Biot number for various

geometric factors b1 for infinite elliptic cylinder.
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solution, the uniformity of the product and the constant

moisture diffusivity and moisture transfer coefficient.

6. Conclusion

Drying of multi-dimensional shape food products has

been analyzed. Considering the analogy between the

heat diffusion and moisture transfer, a simple model for

the drying time of solid food products has been devel-

oped. Previously derived geometric shape factors have

been introduced to evaluate drying times for multi-di-

mensional objects. In general, one-term approximation

is found to be sufficient. The analytical predictions using

the one-term approximation showed that the accuracy

of the present simple model remains within �10% range.
However, the accuracy may be improved by considering

two or more terms in the analysis. Future work will be

conducted to develop shape factors for irregular shaped

products and to study the effect of shrinkage on the

moisture diffusion.
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